Lifting the lid on metatungstate. ¹H and ¹⁸³W NMR study of the six electron reduced anion $[(H)_2 \{W^{IV}_3(OH_2)_3\}W^{VI}_9O_{34}(OH)_3]^{3-}$

Colette Boskovic,^a Maruse Sadek,^{*b} Robert T. C. Brownlee,^b Alan M. Bond^c and Anthony G. Wedd^{*a}

^a School of Chemistry, University of Melbourne, Parkville, Victoria 3052, Australia. E-mail: t.wedd@chemistry.unimelb.edu.au

^b Department of Chemistry, La Trobe University, Bundoora, Victoria 3083, Australia. E-mail: m.sadek@latrobe.edu.au

^c Department of Chemistry, Monash University, Clayton, Victoria 3168, Australia

Received (in Cambridge, UK) 4th January 1999, Accepted 15th February 1999

The distribution of the eleven protons present in a sixelectron reduced form of metatungstate, $[(H)_2\{W^{IV}_3-(OH_2)_3\}W^{VI}_9O_{34}(OH)_3]^{3-}$, in dry CD₃CN is mapped by ¹H and ¹⁸³W NMR, allowing assessment of structural changes which accompany reduction.

The four trinuclear capping units of Keggin polyoxo anions $[X^nW^{VI}_{12}O_{40}]^{n-8}$ (T_d point symmetry; see framework in Fig. 1) are linked to define a tetrahedral cavity encapsulating atom X.¹ Six-electron reduction leads, for $X^n = 2H^I$, B^{III} , Si^{IV} , to the 'poly-browns'.^{1,2} X-Ray crystallographic and aqueous solution NMR data suggest effective C_{3v} point symmetry for these species, consistent with localisation of the added electrons in a single trinuclear cap whose terminal oxo ligands are protonated to aqua ligands.³⁻⁶

 $(W^{VI}=O)_3 + 6 e^- + 6 H^+ \rightarrow (W^{IV} \leftarrow OH_2)_3$

The salt (NH₄)₄[(H)₂{W^{IV}₃(OH₂)₃}W^{II}₉O₃₅(OH)₂] **I** was synthesised by controlled potential electrolysis in aqueous HCl and converted to (NBu₄)₃[(H)₂{W^{IV}₃(OH₂)₃}W^{II}₉O₃₄(OH)₃] **II** by phase transfer.⁷ In D₂O, **I** exhibits a single ¹H NMR resonance (two equivalent internal hydrogen atoms) and three ¹⁸³W resonances (3:3:6) consistent with effective C_{3v} point symmetry.^{2–4,8} However, in dry CD₃CN, **II** exhibits five ¹H resonances (A–G) integrating for three W^{IV} and nine W^{VI} centres (Fig. 2, Table 1).

The intensities of the ¹H (4:2:1:2:2) and ¹⁸³W (1:2:2:2:2:2:1) resonances imply the presence of a mirror plane consistent with effective C_s point symmetry. It is apparent that proton exchange rates are reduced significantly in dry CD₃CN, allowing detection of surface-bound protons and differentiation of inequivalent tungsten sites. What is the driving force responsible for the effective change from T_d to C_s

Fig. 1 Polyhedral representation of $[(H)_2 \{W^{IV}_3(OH_2)_3\}W^{VI}_9O_{34}(OH)_3]^{3-}$. W atoms are centred in each 'octahedron' of O atoms.

Fig. 2 NMR spectra of II (0.15 M) in CD₃CN (anion resonances only) (a) 1 H, (b) 183 W (99 atom% 183 W).

symmetry that accompanies the six electron reduction process?

 H_2O addition experiments assign resonance e to the slowly exchanging internal protons H_e and indicate that the protons H_a and H_b are in chemically similar sites.¹⁰ Their relative intensities a:b = 4:2 allow assignment to the W^{IV}–aqua ligand protons. Tungsten resonances A and G of intensity 1 must be assigned to the unique W^{IV} and W^{VI} atoms lying on the mirror plane. The five resonances B–F of intensity 2 are due to five pairs of W atoms related by the mirror plane. B must be assigned to W^{IV} and so the fragments $W_AO(H_b)_2$ and $\{W_BO(H_a)_2\}_2$ are identified (Fig. 1).

A sample of II was enriched to 99 atom% ¹⁸³W. Its ¹⁸³W NMR spectrum featured resolved fine structure (13–18 Hz) assigned as ${}^{2}J_{WOW}$ coupling characteristic of corner-sharing WOW bridges [Fig. 2(b)].¹¹ Assigned resonances A and G are triplets consistent with corner-sharing to two equivalent W

Table 1 NMR data for $(NBu_4)_3[(H)_2\{W^{IV}_3(OH_2)_3\}W^{VI}_9O_{34}(OH)_3]\,{\rm I\!I}~(0.15\,M,\,CD_3CN)$

Nucleus	Resonance	δ	<i>W</i> _{1/2} <i>a</i> /Hz	Relative intensity
lΗ	Ha	8.76	7.7	3.9
	H _b	8.55	7.3	2.0
	H	7.61	2.5	1.0
	H _d	7.22	2.4	2.0
	He	7.11	8.6	2.1
183W	WA	1413.2	4.4	1
	WB	1402.7	5.7	2
	W _C	-42.6	5.7	2
	WD	-64.5	7.1	2
	WE	-128.7	4.5	2
	W _F	-171.0	3.4	2
	W _G	-187.4	5.2	1

^a For natural abundance samples.

Fig. 3 Map of dipolar HH (----) and scalar WH (----) connectivities to protons H_a-H_d in **II**. Longer range interactions bd and Ad are are also observed but are omitted for clarity.

atoms (Fig. 1). On the other hand, C and E are doublets. A COSY experiment displayed a W^{VI}W^{VI} cross-peak CG which allows assignment of C to the pair of tungsten atoms cornersharing to unique atom W_G and E to the pair of tungsten atoms corner-sharing with unique atom W_A (Fig. 1). The only other W^{VI}W^{VI} COSY crosspeak detected was DF and tungsten atoms W_D and W_F were assigned on the basis of multiple WOW corner-sharing interactions [Figs. 1, 2(b); *vide infra*: ref. 12].

Assignment and location of the three protons H_c and H_d were addressed initially by a HH ROESY experiment. Cross peaks ac, ad, bd and cd were detected. These dipolar interactions are mapped in Fig. 3. No interactions were observed between internal protons H_e and any of the external protons H_a - H_d .

Mapping of scalar interactions utilised WH HMQC experiments. ¹⁸³W–¹H coupling was not detected in the 1D spectra (*cf.* Fig. 2) implying that ${}^{2}J_{\text{WOH}} < W_{1/2} = 2-9$ Hz, allowing constraints to be set on mixing times. A spectrum is shown in Fig. 4 and the scalar connectivities are included in Fig. 3.¹²

The mapping indicates that resonances c and d may be assigned to three hydroxyl protons associated with the reduced $W^{IV}_3(AB_2)$ and unique $W^{VI}_3(GF_2)$ caps (Figs. 1, 3). Hydrogen oxide ligands $H_3O_2^{-1}$ ligands which bridge pairs of metal atoms have been identified previously,¹³ but similar stereochemistry does not appear possible here.

The C_s point symmetry of II is imposed by the positions of the three hydroxyl protons H_c and H_d (Fig. 1). The electronic feature which drives this localisation of protons is the localisation of the six added electrons in the reduced cap AB₂. $K_{5}[B^{III}{W^{IV}_{3}(OH_{2})_{3}}W^{VI}_{9}$ six-electron In reduced O_{37}]·13.5H₂O, the W^{IV}–W^{IV} bond lengths [mean 2.543(3) Å] in the reduced cap are ca. 0.77 Å shorter than the WVI...WVI separations in the oxidised caps.⁶ The resulting mismatch in dimensions causes the boron atom to move ca. 0.4 Å within the internal BO₄ unit and away from the reduced cap but C_{3v} symmetry is retained. The internal cavity in II features two hydrogen atoms only and this anion accommodates the mismatch in a different way: three WOW links are converted to longer W(OH)W links [Fig. 1]. Ongoing work will provide more details.

Fig. 4 ¹⁸³W⁻¹H HMQC spectrum of **II** (0.15 M, natural abundance) in CD₃CN ($t_m = 60 \text{ ms}$; 128 × 4 K, 256 transients per increment; 25 °C).

A. M. B. and A. G. W. acknowledge support from the Australian Research Council. Associate Professor Richard Robson is thanked for stimulating discussions.

Notes and references

- M. T. Pope, *Heteropoly and Isopoly Oxometalates*, Springer-Verlag, New York, 1983.
- 2 J. P. Launay, J. Inorg. Nucl. Chem., 1976, 38, 807.
- 3 K. Piepgrass and M. T. Pope, J. Am. Chem. Soc., 1987, 109, 1586.
- 4 K. Piepgrass and M. T. Pope, J. Am. Chem. Soc., 1989, 111, 753.
- 5 Y. Jeannin, J. P. Launay, M. A. Seid Sedjadi, *Inorg. Chem.*, 1980, 19, 2933.
- 6 T. Yamase and E. Ishikawa, J. Chem. Soc., Dalton Trans., 1996, 1619.
- 7 A solution of ammonium metatungstate in HCl was reduced to the 6e–level.³ The ammonium salt was isolated after volume reduction and precipitation with MeOH. Phase transfer⁴ mediated *via* a solution of NBu₄Br in CH₂Cl₂ led to the NBu₄Br salt.
- 8 J. P. Launay, M. Boyer and F. Chauveau, J. Inorg. Nucl. Chem., 1976, 38, 243.
- 9 ¹⁸³W spectra were acquired on a Bruker DRX500 spectrometer equipped with a broadband probe at 30 °C. Spectra were acquired at 20.837 MHz using a 60° pulse of 26 μs. Spectra were processed with a line broadening of 1 Hz. COSY 90 spectra were acquired using a 90° pulse of 39 μs. Experiments over the W^{VI} and W^{IV} chemical shift regions were acquired separately owing to their large separation. Gradient non-phase sensitive HMQC experiments were acquired on a Bruker DRX400 spectrometer equipped with an inverse probe at 25 °C. The probe was tuned to 400.130 MHz for ¹H and 16.671 MHz for ¹⁸³W. 90° pulses of 13.5, 15.3 and 25.7 μs for ¹H and 44 μs for ¹⁸³W were employed.
- 10 H_e shifts by < 0.1 ppm ($W_{1/2}$, 5–9 Hz) in the range 0–100 equiv. added H₂O. Resonances H_a, H_b and H_c, H_d broaden beyond detectability at \approx 100 and 25 equiv. added H₂O, respectively.
- 11 J. Lefebvre, F. Chauveau, P. Doppelt and C. Brevard, J. Am. Chem. Soc., 1981, 103, 4589. Coupling characteristic of edge sharing is not resolved (ref. 4); the situation is also complicated by long range WW coupling.
- 12 The assignments of W_D and W_F are strengthened by the absence of Dd and the presence of Fd and Gd crosspeaks.
- 13 M. Ardon and A. Bino, Struct. Bonding (Berlin), 1987, 65, 1.

Communication 9/00088G